On a Conjecture Concerning the Friendly Index Sets of Trees
نویسندگان
چکیده
For a graph G = (V,E) and a binary labeling f : V (G) → Z2, let vf (i) = |f−1(i)|. The labling f is said to be friendly if |vf (1)−vf (0)| ≤ 1. Any vertex labeling f : V (G) → Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = |f(x)− f(y)|. Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| : f is a friendly vertex labeling of G }. In [15] Lee and Ng conjectured that the friendly index sets of trees will form an arithmetic progression. This conjecture has been mentioned in [17] and other manuscripts. In this paper we will first determine the friendly index sets of certain caterpillars of diameter four. Then we will disprove the conjecture by presenting an infinite number of trees whose friendly index sets do not form an arithmetic progression.
منابع مشابه
On Friendly Index Sets of Trees
For a graph G = (V, E) and a coloring f : V (G) → Z 2 let vf (i) = |f−1(i)|. f is said to be friendly if |vf (1)−vf (0)| ≤ 1. The coloring f : V (G) → Z 2 induces an edge labeling f∗ : E(G) → Z 2 defined by f∗(xy) = f(x) + f(y) ∀xy ∈ E(G), where the summation is done in Z 2. Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| ...
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کاملFrankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملOn two problems concerning the Zariski topology of modules
Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 90 شماره
صفحات -
تاریخ انتشار 2009